153 research outputs found

    Cometary Nuclei – from Giotto to Rosetta

    Get PDF
    We will briefly recapitulate the beginning of modern cometary physic. Then we will assess the results of the cometary flyby missions previous to ESA’s Rosetta rendezvous with comet 67P/Churyumov-Gerasimenko. Emphasis is given to the physical properties of cometary nuclei. We will relate the results of the Rosetta mission to those of the flybys. A major conclusion is that the visited cometary nuclei seem to be alike but represent different stages of evolution. Coma composition and appearance are not only controlled by the composition of the nucleus but also strongly influenced by the shape and rotation axis orientation of the nucleus and resulting seasons that generate varying surface coverage by back fall material. Rosetta showed that the coma composition is not only varying spatially but also strongly with time during the perihelion passage. Hence past interpretations of cometary coma observations have to be re-considered. Finally, we will try to assess the impact of the cornerstone mission leading to a critical evaluation of the mission results. Lessons learned from Rosetta are discussed; major progress and open points in cometary research are reviewed

    Local manifestations of cometary activity

    Get PDF
    Comets are made of volatile and refractory material and naturally experience various degrees of sublimation as they orbit around the Sun. This gas release, accompanied by dust, represents what is traditionally described as activity. Although the basic principles are well established, most details remain elusive, especially regarding the mechanisms by which dust is detached from the surface and subsequently accelerated by the gas flows surrounding the nucleus. During its 2 years rendez-vous with comet 67P/Churyumov-Gerasimenko, ESA's Rosetta has observed cometary activity with unprecedented details, in both the inbound and outbound legs of the comet's orbit. This trove of data provides a solid ground on which new models of activity can be built. In this chapter, we review how activity manifests at close distance from the surface, establish a nomenclature for the different types of observed features, discuss how activity is at the same time transforming and being shaped by the topography, and finally address several potential mechanisms.Comment: This paper is a review chapter in the upcoming book "Comets: Post 67P Perspectives" edited by ISSI and Space Science Reviews. Accepted on 08 April 201

    Gas flow in near surface comet like porous structures: Application to 67P/Churyumov-Gerasimenko

    Get PDF
    We performed an investigation of a comet like porous surface to study how sub-surface sublimation with subsequent flow through the porous medium can lead to higher gas temperatures at the surface. A higher gas temperature of the emitted gas at the surface layer, compared to the sublimation temperature, will lead to higher gas speeds as the gas expands into the vacuum thus altering the flow properties on larger scales (kilometres away from the surface). Unlike previous models that have used modelled artificial structures, we used Earth rock samples with a porosity in the range 24 – 92 % obtained from X-ray micro computed tomography (micro-CT) scans with resolution of some μm. Micro-CT scanning technology provides 3D images of the pore samples. The direct simulation Monte Carlo (DSMC) method for the rarefied gas dynamics is directly applied on the digital rock samples in an unstructured mesh to determine the gas densities, temperatures and speeds within the porous medium and a few centimetres above the surface. The thicknesses of the rock samples were comparable to the diurnal thermal skin depth (5cm). H2O was assumed to be the outgassing species. We correlated the coma temperatures and other properties of the flow with the rock porosities. The results are discussed as an input to analysis of data from the Microwave Instrument on Rosetta Orbiter (MIRO) on the 67P/Churyumov-Gerasimenko

    Earth-like Habitats in Planetary Systems

    Full text link
    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in those planetary systems hosting giant planets. Gravitational interactions within a complex multiple-body structure including giant planets may supply terrestrial planets with materials which formed in the colder region of the proto-planetary disk. During these processes, water, the prime requisite for habitability, is delivered to the inner system. This may occur either during the main accretion phase of terrestrial planets or via impacts during a post-accretion bombardment. Results for both processes are summarized and discussed with reference to the lunar crater record. Starting from a scenario involving migration of the giant planets this contribution discusses the delivery of water to Earth, the modification of atmospheres by impacts in a planetary system context and the likelihood of the existence of extrasolar Earth-like habitable worlds.Comment: 36 Pages, 6 figures, 2014, Special Issue in Planetary and Space Science on the Helmholtz Research Alliance on Planetary Evolution and Lif

    Tensile strength of dust-ice mixtures and their relevance as cometary analog material

    Get PDF
    Aims. The tensile strength of granular matter is of great importance to our understanding of the evolution of comets and to our attempts to reproduce processes on cometary surfaces in laboratory experiments. In this work, we investigate the tensile strength of three different materials and their mixtures, which can be used as cometary analog materials in the laboratory. Methods. We used two types of siliceous dusts and granular water ice whose polydisperse particles were either angular or spherical. Our samples were cooled to below 150 K to better simulate the conditions of a cometary surface and to avoid thermal alteration of the material. We used the Brazilian disk test method to exert stress on the cooled samples and determine the tensile strength at the moment the samples broke. Results. We find that the tensile strength of two component mixtures is strongly dominated by the component with the higher tensile strength. The materials made of mostly angular dust particles have a lower filling fraction, but a higher tensile strength compared to materials made of spherical particles. Furthermore, the tensile strength of the cooled components is substantially lower than the tensile strength of the same components at room temperature. This implies that the surface energy of the investigated materials at low temperatures is significantly lower than previously assumed

    In-Situ Radiometric Investigation of Phobos using the MMX Rover’s miniRAD Instrument.

    Get PDF
    The JAXA MMX sample return mission to the martian moons will deliver a rover to the surface of Phobos that will investigate the landing area using its navigation cameras (NavCams), its regolith facing cameras (WheelCams), its Raman spectrometer (RAX), as well as its mid infrared radiometer (miniRAD). The distance that can be travelled by the Rover depends on the yet unknown terrain properties, but is estimated to range from a few meters to hundreds of meters. The rover and its instruments will operate on the surface of Phobos for at least 100 days

    Thermal fracturing on comets: Applications to 67P/Churyumov-Gerasimenko

    Get PDF
    We simulate the stresses induced by temperature changes in a putative hard layer near the surface of comet 67P/Churyumov-Gerasimenko with a thermo-viscoelastic model. Such a layer could be formed by the recondensation or sintering of water ice (and dust grains), as suggested by laboratory experiments and computer simulations, and would explain the high compressive strength encountered by experiments on board the Philae lander. Changes in temperature from seasonal insolation variation penetrate into the comet’s surface to depths controlled by the thermal inertia, causing the material to expand and contract. Modelling this with a Maxwellian viscoelastic response on a spherical nucleus, we show that a hard, icy layer with similar properties to Martian permafrost will experience high stresses: up to tens of MPa, which exceed its material strength (a few MPa), down to depths of centimetres to a metre. The stress distribution with latitude is confirmed qualitatively when taking into account the comet’s complex shape but neglecting thermal inertia. Stress is found to be comparable to the material strength everywhere for sufficient thermal inertia (≳ 50 J m−2 K−1 s−1∕2) and ice content (≳ 45% at the equator). In this case, stresses penetrate to a typical depth of ~0.25 m, consistent with the detection of metre-scale thermal contraction crack polygons all over the comet. Thermal fracturing may be an important erosion process on cometary surfaces which breaks down material and weakens cliffs

    Low thermal conductivity boulder with high porosity identified on C-type asteroid (162173) Ryugu

    Get PDF
    C-type asteroids are among the most pristine objects in the Solar System, but little is known about their interior structure and surface properties. Telescopic thermal infrared observations have so far been interpreted in terms of a regolith-covered surface with low thermal conductivity and particle sizes in the centimetre range. This includes observations of C-type asteroid (162173) Ryugu. However, on arrival of the Hayabusa2 spacecraft at Ryugu, a regolith cover of sand- to pebble-sized particles was found to be absent. Rather, the surface is largely covered by cobbles and boulders, seemingly incompatible with the remote-sensing infrared observations. Here we report on in situ thermal infrared observations of a boulder on the C-type asteroid Ryugu. We found that the boulder’s thermal inertia was much lower than anticipated based on laboratory measurements of meteorites, and that a surface covered by such low-conductivity boulders would be consistent with remote-sensing observations. Our results furthermore indicate high boulder porosities as well as a low tensile strength in the few hundred kilopascal range. The predicted low tensile strength confirms the suspected observational bias in our meteorite collections, as such asteroidal material would be too frail to survive atmospheric entry.Additional co-authors: J Helbert, A Maturilli, N Müller, N Sakatani, S Tanaka, T Arai, S Mottola, S Tachibana, I Pelivan, L Drube, J-B Vincent, H Yano, C Pilorget, K D Matz, N Schmitz, A Koncz, S Schröder, F Trauthan, M Schlotterer, C Krause, T-M Ho and A Moussi-Soffy
    corecore